Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 19.569
1.
J Med Primatol ; 53(3): e12701, 2024 Jun.
Article En | MEDLINE | ID: mdl-38725092

BACKGROUND: Stress profoundly affects physical and emotional well-being, extending its physiological influence to the female menstrual cycle, impeding the hypothalamus-pituitary-gonadal (HPG) axis, and affecting fertility by suppressing sex-stimulating hormones. METHODS: In this study, we meticulously analyzed menstrual cycles and corresponding hormonal fluctuations in three female Cynomolgus monkeys. RESULTS: The preliminary findings indicated lower-than-normal levels of cortisol, follicle-stimulating hormone (FSH), and estradiol. Anovulatory bleeding occurred in one monkey, which could be linked to stress. In contrast to cortisol, alkaline phosphatase (ALP), which is correlated to cortisol levels, was consistently elevated in menstruating monkeys, suggesting its potential as a stress indicator. The non-menstruating group exhibited stress-related weight loss, emphasizing the observed ALP trends. CONCLUSIONS: Non-menstruating monkeys may experience more stress than menstruating monkeys. The implications of this study extend beyond the confines of primate studies and offer a valuable method for enhancing the welfare of female Cynomolgus monkeys.


Estradiol , Hydrocortisone , Macaca fascicularis , Menstrual Cycle , Stress, Physiological , Animals , Macaca fascicularis/physiology , Female , Estradiol/blood , Menstrual Cycle/physiology , Hydrocortisone/blood , Stress, Physiological/physiology , Follicle Stimulating Hormone/blood , Stress, Psychological
2.
Cancer Res ; 84(10): 1546-1547, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745496

Antibody-based immune checkpoint blockade therapy has revolutionized the field of cancer immunotherapy, yet its efficacy remains limited in immunologically cold tumors. Combining checkpoint inhibitors with costimulatory agonists improves tumoricidal activity of T cells but also can lead to off-target hepatotoxicity. Although bispecific antibodies confer tumor selectivity to alleviate undesirable adverse effects, toxicity concerns persist with increased dosing. In this issue of Cancer Research, Yuwen and colleagues introduce ATG-101, a tetravalent PD-L1×4-1BB bispecific antibody with high programmed death ligand 1 (PD-L1) affinity and low 4-1BB affinity, aiming to mitigate hepatotoxicity. ATG-101 demonstrates PD-L1-dependent 4-1BB activation, leading to selective T-cell activation within the tumor microenvironment. ATG-101 exhibits potent antitumor activity, even in large, immunologically cold, and monotherapy-resistant tumor models. Single-cell RNA sequencing reveals significant shifts of immune cell populations in the tumor microenvironment from protumor to antitumor phenotypes following ATG-101 treatment. In cynomolgus monkeys, no serious cytokine storm and hepatotoxicity are observed after ATG-101 treatment, indicating a broad therapeutic window for ATG-101 in cancer treatment. This study highlights the potential of tetravalent bispecific antibodies in cancer immunotherapy, with implications for various antibody-based treatment modalities across different fields. See related article by Yuwen et al., p. 1680.


Antibodies, Bispecific , B7-H1 Antigen , Tumor Microenvironment , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Humans , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Macaca fascicularis
3.
Front Immunol ; 15: 1378813, 2024.
Article En | MEDLINE | ID: mdl-38720892

Background: Blocking the CD47 "don't eat me"-signal on tumor cells with monoclonal antibodies or fusion proteins has shown limited clinical activity in hematologic malignancies and solid tumors thus far. Main side effects are associated with non-tumor targeted binding to CD47 particularly on blood cells. Methods: We present here the generation and preclinical development of NILK-2401, a CEACAM5×CD47 bispecific antibody (BsAb) composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format). Results: NILK-2401 is a fully human BsAb binding the CEACAM5 N-terminal domain on tumor cells by its lambda light chain arm with an affinity of ≈4 nM and CD47 with its kappa chain arm with an intendedly low affinity of ≈500 nM to enabling tumor-specific blockade of the CD47-SIRPα interaction. For increased activity, NILK-2401 features a functional IgG1 Fc-part. NILK-2401 eliminates CEACAM5-positive tumor cell lines (3/3 colorectal, 2/2 gastric, 2/2 lung) with EC50 for antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity ranging from 0.38 to 25.84 nM and 0.04 to 0.25 nM, respectively. NILK-2401 binds neither CD47-positive/CEACAM5-negative cell lines nor primary epithelial cells. No erythrophagocytosis or platelet activation is observed. Quantification of the pre-existing NILK-2401-reactive T-cell repertoire in the blood of 14 healthy donors with diverse HLA molecules shows a low immunogenic potential. In vivo, NILK-2401 significantly delayed tumor growth in a NOD-SCID colon cancer model and a syngeneic mouse model using human CD47/human SIRPα transgenic mice and prolonged survival. In cynomolgus monkeys, single doses of 0.5 and 20 mg/kg were well tolerated; PK linked to anti-CD47 and Fc-binding seemed to be more than dose-proportional for Cmax and AUC0-inf. Data were validated in human FcRn TG32 mice. Combination of a CEACAM5-targeting T-cell engager (NILK-2301) with NILK-2401 can either boost NILK-2301 activity (Emax) up to 2.5-fold or allows reaching equal NILK-2301 activity at >600-fold (LS174T) to >3,000-fold (MKN-45) lower doses. Conclusion: NILK-2401 combines promising preclinical activity with limited potential side effects due to the tumor-targeted blockade of CD47 and low immunogenicity and is planned to enter clinical testing.


Antibodies, Bispecific , CD47 Antigen , Carcinoembryonic Antigen , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Humans , Animals , Mice , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , Cell Line, Tumor , Carcinoembryonic Antigen/immunology , Xenograft Model Antitumor Assays , Neoplasms/immunology , Neoplasms/drug therapy , Female , Macaca fascicularis , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/immunology , GPI-Linked Proteins
4.
Sci Rep ; 14(1): 10044, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698112

Clinical studies using suspensions or sheets of human pluripotent cell-derived retinal pigment epithelial cells (hiPSC-RPE) have been conducted globally for diseases such as age-related macular degeneration. Despite being minimally invasive, cell suspension transplantation faces challenges in targeted cell delivery and frequent cell leakage. Conversely, although the RPE sheet ensures targeted delivery with correct cell polarity, it requires invasive surgery, and graft preparation is time-consuming. We previously reported hiPSC-RPE strips as a form of quick cell aggregate that allows for reliable cell delivery to the target area with minimal invasiveness. In this study, we used a microsecond pulse laser to create a local RPE ablation model in cynomolgus monkey eyes. The hiPSC-RPE strips were transplanted into the RPE-ablated and intact sites. The hiPSC-RPE strip stably survived in all transplanted monkey eyes. The expansion area of the RPE from the engrafted strip was larger at the RPE injury site than at the intact site with no tumorigenic growth. Histological observation showed a monolayer expansion of the transplanted RPE cells with the expression of MERTK apically and collagen type 4 basally. The hiPSC-RPE strip is considered a beneficial transplantation option for RPE cell therapy.


Induced Pluripotent Stem Cells , Macaca fascicularis , Retinal Pigment Epithelium , Animals , Retinal Pigment Epithelium/transplantation , Retinal Pigment Epithelium/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Macular Degeneration/pathology
5.
J Virol ; 98(5): e0151623, 2024 May 14.
Article En | MEDLINE | ID: mdl-38567951

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Antibodies, Neutralizing , Antibodies, Viral , Macaca fascicularis , Yellow Fever Vaccine , Yellow Fever , Yellow fever virus , Animals , Yellow Fever Vaccine/immunology , Humans , Yellow Fever/prevention & control , Yellow Fever/immunology , Yellow Fever/virology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Yellow fever virus/immunology , Vaccination , Male , Female , Disease Models, Animal , Adult , Immunity, Innate , Systems Biology/methods
6.
J Virol ; 98(5): e0023924, 2024 May 14.
Article En | MEDLINE | ID: mdl-38647327

Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.


Antibodies, Neutralizing , Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Vaccines, Virus-Like Particle , Virus Replication , Animals , Antibodies, Neutralizing/immunology , Dengue Virus/immunology , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Dengue/prevention & control , Dengue/immunology , Dengue/virology , Antibodies, Viral/immunology , Mice , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Humans , Vaccination , Serogroup , Immunoglobulin G/immunology , Disease Models, Animal , Macaca fascicularis , Female , Macaca mulatta
7.
Clin Exp Pharmacol Physiol ; 51(6): e13863, 2024 Jun.
Article En | MEDLINE | ID: mdl-38650114

Chronic hyperglycaemia is a chief feature of diabetes mellitus and complicates with many systematic anomalies. Non-human primates (NHPs) are excellent for studying hyperglycaemia or diabetes and associated comorbidities, but lack behavioural observation. In the study, behavioural, brain imaging and histological analysis were performed in a case of spontaneously hyperglycaemic (HGM) Macaca fascicularis. The results were shown that the HGM monkey had persistent body weight loss, long-term hyperglycaemia, insulin resistance, dyslipidemia, but normal concentrations of insulin, C-peptide, insulin autoantibody, islet cell antibody and glutamic acid decarboxylase antibody. Importantly, an impaired working memory in a delayed response task and neurological dysfunctions were found in the HGM monkey. The tendency for atrophy in hippocampus was observed by magnetic resonance imaging. Lenticular opacification, lens fibres disruptions and vacuole formation also occurred to the HGM monkey. The data suggested that the spontaneous HGM monkey might present diabetes-like characteristics and associated neurobehavioral anomalies in this case. This study first reported cognitive deficits in a spontaneous hyperglycaemia NHPs, which might provide evidence to use macaque as a promising model for translational research in diabetes and neurological complications.


Cataract , Hyperglycemia , Macaca fascicularis , Animals , Hyperglycemia/metabolism , Cataract/pathology , Male , Cognition Disorders/etiology , Cognition Disorders/pathology , Nervous System Diseases , Hippocampus/pathology , Hippocampus/metabolism
9.
J Immunother ; 47(5): 160-171, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38562119

SUMMARY: T-cell-directed cancer therapies such as T-cell-engaging bispecifics (TCBs) are commonly associated with cytokine release syndrome and associated clinical signs that can limit their tolerability and therapeutic benefit. Strategies for reducing cytokine release are therefore needed. Here, we report on studies performed in cynomolgus monkeys to test different approaches for mitigating cytokine release with TCBs. A "priming dose" as well as subcutaneous dosing reduced cytokine release compared with intravenous dosing but did not affect the intended T-cell response to the bispecific. As another strategy, cytokines or cytokine responses were blocked with an anti-IL-6 antibody, dexamethasone, or a JAK1/TYK2-selective inhibitor, and the effects on toxicity as well as T-cell responses to a TCB were evaluated. The JAK1/TYK2 inhibitor and dexamethasone prevented CRS-associated clinical signs on the day of TCB administration, but the anti-IL-6 had little effect. All interventions allowed for functional T-cell responses and expected damage to target-bearing tissues, but the JAK1/TYK2 inhibitor prevented the upregulation of activation markers on T cells, suggesting the potential for suppression of T-cell responses. Our results suggest that short-term prophylactic dexamethasone treatment may be an effective option for blocking cytokine responses without affecting desired T-cell responses to TCBs.


Antibodies, Bispecific , Cytokines , Macaca fascicularis , T-Lymphocytes , Animals , Antibodies, Bispecific/pharmacology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cytokines/metabolism , Dexamethasone/pharmacology , Humans , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Interleukin-6/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Neoplasms/immunology , Neoplasms/drug therapy
10.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Article En | MEDLINE | ID: mdl-38557355

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Aqueous Humor , Digoxin , Intraocular Pressure , Macaca fascicularis , Ocular Hypertension , Animals , Intraocular Pressure/drug effects , Digoxin/pharmacology , Aqueous Humor/metabolism , Aqueous Humor/drug effects , Ocular Hypertension/drug therapy , Ocular Hypertension/physiopathology , Ocular Hypertension/metabolism , Disease Models, Animal , Glaucoma/drug therapy , Glaucoma/metabolism , Glaucoma/physiopathology , Rabbits , Humans , Ciliary Body/drug effects , Ciliary Body/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Male , Trabecular Meshwork/drug effects , Trabecular Meshwork/metabolism
11.
J Transl Med ; 22(1): 362, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632563

BACKGROUND: HER3 (ErbB3), a member of the human epidermal growth factor receptor family, is frequently overexpressed in various cancers. Multiple HER3-targeting antibodies and antibody-drug conjugates (ADCs) were developed for the solid tumor treatment, however none of HER3-targeting agent has been approved for tumor therapy yet. We developed DB-1310, a HER3 ADC composed of a novel humanized anti-HER3 monoclonal antibody covalently linked to a proprietary DNA topoisomerase I inhibitor payload (P1021), and evaluate the efficacy and safety of DB-1310 in preclinical models. METHODS: The binding of DB-1310 to Her3 and other HER families were measured by ELISA and SPR. The competition of binding epitope for DB-1310 and patritumab was tested by FACS. The sensitivity of breast, lung, prostate and colon cancer cell lines to DB-1310 was evaluated by in vitro cell killing assay. In vivo growth inhibition study evaluated the sensitivity of DB-1310 to Her3 + breast, lung, colon and prostate cancer xenograft models. The safety profile was also measured in cynomolgus monkey. RESULTS: DB-1310 binds HER3 via a novel epitope with high affinity and internalization capacity. In vitro, DB-1310 exhibited cytotoxicity in numerous HER3 + breast, lung, prostate and colon cancer cell lines. In vivo studies in HER3 + HCC1569 breast cancer, NCI-H441 lung cancer and Colo205 colon cancer xenograft models showed DB-1310 to have dose-dependent tumoricidal activity. Tumor suppression was also observed in HER3 + non-small cell lung cancer (NSCLC) and prostate cancer patient-derived xenograft (PDX) models. Moreover, DB-1310 showed stronger tumor growth-inhibitory activity than patritumab deruxtecan (HER3-DXd), which is another HER3 ADC in clinical development at the same dose. The tumor-suppressive activity of DB-1310 synergized with that of EGFR tyrosine kinase inhibitor, osimertinib, and exerted efficacy also in osimertinib-resistant PDX model. The preclinical assessment of safety in cynomolgus monkeys further revealed DB-1310 to have a good safety profile with a highest non severely toxic dose (HNSTD) of 45 mg/kg. CONCLUSIONS: These finding demonstrated that DB-1310 exerted potent antitumor activities against HER3 + tumors in in vitro and in vivo models, and showed acceptable safety profiles in nonclinical species. Therefore, DB-1310 may be effective for the clinical treatment of HER3 + solid tumors.


Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Colonic Neoplasms , Immunoconjugates , Indoles , Lung Neoplasms , Prostatic Neoplasms , Pyrimidines , Topoisomerase I Inhibitors , Animals , Humans , Male , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Epitopes , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lung Neoplasms/drug therapy , Macaca fascicularis/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Receptor, ErbB-3 , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Xenograft Model Antitumor Assays
12.
Xenobiotica ; 54(4): 201-210, 2024 Apr.
Article En | MEDLINE | ID: mdl-38563808

The novel anti-Parkinson disease drug, FLZ, had a complicated drug absorption and metabolise process reported in single-dose studies. A multi-peak absorption peak phenomenon was found.This study focused on the multi-dose pharmacokinetics (PK) characteristics of FLZ, T1, and T2 in cynomolgus monkeys and raised discussion on its multi-peak absorption situation. Different doses of FLZ ranging from 75 to 300 mg/kg were administered orally to 16 cynomolgus monkeys. The whole treatment period lasted for 42 days with FLZ once a day.The primary metabolites of FLZ were Target1 (T1) and Target2 (T2), which had plasma exposure (calculated as AUC0-24, day 42) approximately 2 and 10 times higher than the parent drug. The proportion of plasma exposure increase was lower than the proportion of dose increase in FLZ, T1, and T2.Gender influenced its exposure (AUC0-24) with approximately 3-fold higher in males than females. There was no significant accumulation of T1 and T2. Enterohepatic Circulation (EHC) and gastrointestinal (GI) tract absorption may be involved in the mechanism of multi-peak characteristics.


Antiparkinson Agents , Macaca fascicularis , Animals , Antiparkinson Agents/pharmacokinetics , Antiparkinson Agents/administration & dosage , Male , Female , Administration, Oral , Dose-Response Relationship, Drug
13.
Int Immunopharmacol ; 133: 112040, 2024 May 30.
Article En | MEDLINE | ID: mdl-38631220

BACKGROUND: Ankylosing spondylitis (AS) is a chronic autoimmune arthritis that mainly affects spine joints. To date, the pathogenesis of AS remains unclear, although immune cells and innate immune response cytokines have been suggested to be crucial players. METHODS: By adopting a single-cell RNA sequencing approach in the AS cynomolgus model, we profiled and characterized PBMC proportions along disease progression. RESULTS: Here, our primary focus was on the activation of an immune cascade-initiating lymphocyte subtype known as CD4+CXCR5+ T follicular helper (Tfh) cells. These Tfhs demonstrated a localized residence in AS bone lesion as an ectopic lymphoid structure. Moreover, Tfhs would serve as an upstream initiator for a pro-angiogenic cascade. Then, an expansion in CD14+ monocytes and DC cells subsets resulted in enhanced expression of angiogenesis genes in these AS cynomolgus monkeys. With a confirmed higher abundance of TNF-α accompanying H-type vascular invasion in the osteophytic region, pronounced expansion of Tfhs at such lesion site signaling for monocytes and DCs intrusion is considered as the prelude to the characteristic angiogenic bony outgrowth in AS known as syndesmophytes. CONCLUSIONS: We explored the intimate relationship between local inflammation and bone formation in AS from the perspective of nascent vascularisation. Hence, our study lays the foundation for elucidating a unified AS pathogenesis through the immune-angiogenesis-osteogenesis axis.


Macaca fascicularis , Neovascularization, Pathologic , Spondylitis, Ankylosing , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/genetics , Animals , Neovascularization, Pathologic/immunology , Humans , Monocytes/immunology , Disease Models, Animal , T Follicular Helper Cells/immunology , Osteogenesis/immunology , Male , Dendritic Cells/immunology , Angiogenesis
14.
J Neurosci ; 44(18)2024 May 01.
Article En | MEDLINE | ID: mdl-38548340

A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.


Color Perception , Fovea Centralis , Retinal Cone Photoreceptor Cells , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/physiology , Retinal Cone Photoreceptor Cells/physiology , Fovea Centralis/physiology , Color Perception/physiology , Photic Stimulation/methods , Male , Female , Macaca fascicularis
15.
Sci Rep ; 14(1): 6023, 2024 03 12.
Article En | MEDLINE | ID: mdl-38472278

The parasite Plasmodium knowlesi has been the sole cause of malaria in Malaysia from 2018 to 2022. The persistence of this zoonotic species has hampered Malaysia's progress towards achieving the malaria-free status awarded by the World Health Organisation (WHO). Due to the zoonotic nature of P. knowlesi infections, it is important to study the prevalence of the parasite in the macaque host, the long-tailed macaque (Macaca fascicularis). Apart from P. knowlesi, the long-tailed macaque is also able to harbour Plasmodium cynomolgi, Plasmodium inui, Plasmodium caotneyi and Plasmodium fieldi. Here we report the prevalence of the 5 simian malaria parasites in the wild long-tailed macaque population in 12 out of the 13 states in Peninsular Malaysia using a nested PCR approach targeting the 18s ribosomal RNA (18s rRNA) gene. It was found that all five Plasmodium species were widely distributed throughout Peninsular Malaysia except for states with major cities such as Kuala Lumpur and Putrajaya. Of note, Pahang reported a malaria prevalence of 100% in the long-tailed macaque population, identifying it as a potential hotspot for zoonotic transmission. Overall, this study shows the distribution of the 5 simian malaria parasite species throughout Peninsular Malaysia, the data of which could be used to guide future malaria control interventions to target zoonotic malaria.


Malaria , Parasites , Plasmodium knowlesi , Animals , Macaca fascicularis/parasitology , Malaysia/epidemiology , Prevalence , Malaria/parasitology , Plasmodium knowlesi/genetics
16.
J Med Chem ; 67(6): 4419-4441, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38502782

Optimization of the highly potent and selective, yet metabolically unstable and poorly soluble hRXFP1 agonist AZ7976 led to the identification of the clinical candidate, AZD5462. Assessment of RXFP1-dependent cell signaling demonstrated that AZD5462 activates a highly similar panel of downstream pathways as relaxin H2 but does not modulate relaxin H2-mediated cAMP second messenger responsiveness. The therapeutic potential of AZD5462 was assessed in a translatable cynomolgus monkey heart failure model. Following 8 weeks of treatment with AZD5462, robust improvements in functional cardiac parameters including LVEF were observed at weeks 9, 13, and 17 without changes in heart rate or mean arterial blood pressure. AZD5462 was well tolerated in both rat and cynomolgus monkey and has successfully completed phase I studies in healthy volunteers. In summary, AZD5462 is a small molecule pharmacological mimetic of relaxin H2 signaling at RXFP1 and holds promise as a potential therapeutic approach to treat heart failure patients.


Heart Failure , Relaxin , Humans , Rats , Animals , Relaxin/pharmacology , Receptors, G-Protein-Coupled/metabolism , Macaca fascicularis/metabolism , Receptors, Peptide/metabolism , Heart Failure/drug therapy
17.
Cells ; 13(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38534402

Non-human primates (NHPs) are pivotal animal models for translating novel cell replacement therapies into clinical applications, including validating the safety and efficacy of induced pluripotent stem cell (iPSC)-derived products. Preclinical development and the testing of cell-based therapies ideally comprise xenogeneic (human stem cells into NHPs) and allogenic (NHP stem cells into NHPs) transplantation studies. For the allogeneic approach, it is necessary to generate NHP-iPSCs with generally equivalent quality to the human counterparts that will be used later on in patients. Here, we report the generation and characterization of transgene- and feeder-free cynomolgus monkey (Macaca fascicularis) iPSCs (Cyno-iPSCs). These novel cell lines have been generated according to a previously developed protocol for the generation of rhesus macaque, baboon, and human iPSC lines. Beyond their generation, we demonstrate the potential of the novel Cyno-iPSCs to differentiate into two clinically relevant cell types, i.e., cardiomyocytes and neurons. Overall, we provide a resource of novel iPSCs from the most frequently used NHP species in the regulatory testing of biologics and classical pharmaceutics to expand our panel of iPSC lines from NHP species with high relevance in preclinical testing and translational research.


Induced Pluripotent Stem Cells , Animals , Humans , Induced Pluripotent Stem Cells/metabolism , Macaca fascicularis , Cell Differentiation/physiology , Macaca mulatta , Transgenes
18.
Cell Rep ; 43(3): 113878, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38431844

Cytidine deaminase defines the properties of cytosine base editors (CBEs) for C-to-T conversion. Replacing the cytidine deaminase rat APOBEC1 (rA1) in CBEs with a human APOBEC3A (hA3A) improves CBE properties. However, the potential CBE application of macaque A3A orthologs remains undetermined. Our current study develops and evaluates engineered CBEs based on Macaca fascicularis A3A (mA3A). Here, we demonstrate that BE4-mA3A and its RNA-editing-derived variants exhibit improved CBE properties, except for DNA off-target activity, compared to BE3-rA1 and BE4-rA1. Unexpectedly, deleting Ser-Val-Arg (SVR) in BE4-mA3A dramatically reduces DNA and RNA off-target activities and improves editing accuracy, with on-target efficiency unaffected. In contrast, a chimeric BE4-hA3A-SVR+ shows editing efficiency increased by about 50%, with other properties unaffected. Our findings demonstrate that mA3A-based CBEs could provide prototype options with advantages over rA1- and hA3A-based CBEs for further optimization, highlighting the importance of the SVR motif in defining CBE intrinsic properties.


Cytosine , Gene Editing , Proteins , Rats , Animals , Humans , Macaca fascicularis , Cytidine Deaminase/genetics , RNA/genetics , DNA/genetics , CRISPR-Cas Systems
19.
Cancer Immunol Immunother ; 73(5): 82, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38554200

BACKGROUND: Claudin 18.2 (CLDN18.2) is a highly anticipated target for solid tumor therapy, especially in advanced gastric carcinoma and pancreatic carcinoma. The T cell engager targeting CLDN18.2 represents a compelling strategy for enhancing anti-cancer efficacy. METHODS: Based on the in-house screened anti-CLDN18.2 VHH, we have developed a novel tri-specific T cell engager targeting CLDN18.2 for gastric and pancreatic cancer immunotherapy. This tri-specific antibody was designed with binding to CLDN18.2, human serum albumin (HSA) and CD3 on T cells. RESULTS: The DR30318 demonstrated binding affinity to CLDN18.2, HSA and CD3, and exhibited T cell-dependent cellular cytotoxicity (TDCC) activity in vitro. Pharmacokinetic analysis revealed a half-life of 22.2-28.6 h in rodents and 41.8 h in cynomolgus monkeys, respectively. The administration of DR30318 resulted in a slight increase in the levels of IL-6 and C-reactive protein (CRP) in cynomolgus monkeys. Furthermore, after incubation with human PBMCs and CLDN18.2 expressing cells, DR30318 induced TDCC activity and the production of interleukin-6 (IL-6) and interferon-gamma (IFN-γ). Notably, DR30318 demonstrated significant tumor suppression effects on gastric cancer xenograft models NUGC4/hCLDN18.2 and pancreatic cancer xenograft model BxPC3/hCLDN18.2 without affecting the body weight of mice.


Pancreatic Neoplasms , Stomach Neoplasms , Humans , Mice , Animals , T-Lymphocytes , Interleukin-6 , Macaca fascicularis/metabolism , Pancreatic Neoplasms/therapy , Stomach Neoplasms/pathology , Immunotherapy , Claudins/metabolism
20.
Zool Res ; 45(2): 299-310, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38485500

Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques ( Macaca mulatta, MMU) and crab-eating macaques ( M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from 84 samples (41 MFA samples and 43 MMU samples) encompassing 14 common tissues. Our findings revealed a small fraction of genes (3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover, 19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary, this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.


Genomics , Transcriptome , Humans , Animals , Macaca mulatta/genetics , Macaca fascicularis/genetics , Gene Expression Profiling/veterinary
...